Search This Blog

Thursday, June 30, 2016

USDA Launches a One Stop Shop for its “One Health” Approach to Zoonotic Threats

From the #USDA:


U.S. Department of Agriculture (USDA) Agriculture Research Service (ARS) graduate student Jacquelyn Escarcha
U.S. Department of Agriculture (USDA) Agriculture Research Service (ARS) graduate student Jacquelyn Escarcha inserts samples developed from cattle fecal waste into a solution that detects Salmonella on Dec. 6, 2002. USDA photo by Peggy Greb.
At USDA, we use a One Health approach that embraces the idea that problems arising at the intersection of the health of humans, animals, and the environment can be solved only through a coordinated multidisciplinary approach.  This approach embraces the idea that a disease problem impacting the health of humans, animals, and the environment only can be solved through improved communication, cooperation, and collaboration across disciplines and institutions.
Because the One Health work that we do spans across many USDA agencies, we are launching acentralized web portal page to better help our stakeholders and the public better access our information.   This page features USDA’s collective body of work on antimicrobial resistance (AMR), avian influenza and swine influenza as well as other One Health resources.
Using this collaborative approach, USDA, with its partners, seeks to maintain or reduce health risks to animals, humans, the environment and society.  USDA has gained in-depth knowledge about, for example, zoonotic diseases (diseases that can move from animals to people or people to animals) and conditions such as AMR through its work on the agricultural production environment, animal health and food safety.  Pathogens (disease causing organisms) can evolve and move from one organism to another and through the environment. Sometimes they mutate or evolve into more virulent strains, and sometimes they evolve to resist countermeasures such as the application of antibiotics.  Investment in understanding the ecology of pathogens is necessary to develop strategies to address them.
Within USDA, the Animal and Plant Health Inspection Service, Agricultural Marketing Service, Agricultural Research Service, Economic Research Service, Food Safety and Inspection Service, Foreign Agricultural Service, National Agricultural Statistics Service and National Institutes of Food and Agriculture are all actively engaged in ongoing projects to better understand these and other complex issues at the animal, human and ecosystem interface.
USDA also partners with other U.S. government agencies – such as the U.S. Fish and Wildlife Service, U.S. Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC), the National Institutes of Health (NIH), the Environmental Protection Agency, and tribal Nations – to prevent and control problems that affect animal and plant health, human health and the environment.  USDA emphasizes increased collaboration with other agencies to leverage infrastructures overseas to provide training and technical assistance on One Health issues.
USDA serves the nation through its commitment to producing wholesome and nutritious foods, preserving the safety of meat, poultry and egg products entering our country, through inspection services, and preserving the health, welfare and humane treatment of food animals while ensuring the health and safety of humans through our One Health partnerships.

UnitedHealth Group - UnitedHealth Group Recognized by The Civic 50 as Nation’s Top Community-Minded Health Care Company for Third Year in a Row

  • Company included in The Civic 50 rankings every year since initiative began 
  • Ranking recognizes UnitedHealth Group’s commitment to helping build healthier communities 


UnitedHealth Group - UnitedHealth Group Recognized by The Civic 50 as Nation’s Top Community-Minded Health Care Company for Third Year in a Row

UC Sheep Shearing School Prepares Students for Gainful Employment

From the #USDA:


A flock of sheep
Unshorn sheep await their turn. Image courtesy of Jeanette Warnert
USDA’s National Institute of Food and Agriculture (NIFA) administers the Smith-Lever capacity grant programThe Smith–Lever Act established the cooperative extension services program administered through land-grant universities. Today, a guest blog from Jeanette Warnert, University of California Division of Agriculture and Natural Resources, tells us how this program supports a unique rural economic opportunity:
Sheep shearing is like a dance. It requires strength, flexibility, a tender touch, and the right moves. Once mastered, the skill can open the door to gratifying and high-paying seasonal work.
Sheep shearers will never be unemployed and never be poor. They can earn $50 to $100 per hour and can start a business with a $3,000 investment in equipment, says John Harper, University of California Cooperative Extension (UCCE) natural resources advisor in Mendocino County.
The need for skilled sheep shearers in California and other parts of the nation has prompted the University of California Hopland Research and Extension Center to host an annual sheep shearing school, the only intensive five-day course in the United States. Harper, the lead instructor and coordinator of sheep shearing school, is a 25-year veteran of UCCE.  USDA’s National Institute of Food and Agriculture (NIFA) funds the program through a Smith-Lever capacity grant.
Although sheep shearing is traditionally a male occupation, women are also encouraged to take the course. In this low-to-the-ground endeavor, women have the advantage of a lower center of gravity. Strength is important, but so is the shearer’s flexibility, especially hip rotation. The sheep’s skin is very loose and the blades are powerful. Harper said the female students tend to be more cautious, which results in fewer nicks.
Beatrice Thomas, 41, is a typical student. A dancer, she left her Bay Area office job a year ago because, after sitting for 40 hours at a desk, her body ached. The finesse and physical work of sheep shearing, on the other hand, left her feeling vital.
The 5,200-acre Hopland Research and Extension Center is home to a flock of about 1,000 sheep, which provide opportunities for scientists to study their role in land management. They also serve as a ready supply of animals for prospective new shearers to learn the craft.
The instructors say learning to handle sheep calmly is the key to shearing success. Learning the finer points of shearing – footwork, positions, and getting the pattern down – come with practice.
The week-long sheep shearing school at Hopland are held in the spring. The class typically fills up within two hours of opening registration. Visit the UCCE Mendocino website for more information or to be notified when the next registration opens.

Bristol-Myers Squibb’s Response to ICER’s Draft Scoping Document “Treatment Options for Advanced Non-Small-Cell Lung Cancer”

From Bristol-Myers Squibb:


Bristol-Myers Squibb’s Response to ICER’s Draft Scoping Document “Treatment Options for Advanced Non-Small-Cell Lung Cancer”

Wednesday, June 29, 2016 9:31 am EDT
At Bristol-Myers Squibb (BMS), it is our mission to continue to innovate the way cancer is treated by delivering clinically meaningful results―not just incremental improvements―across the entire spectrum of the disease. We believe the value medicines like Opdivo (nivolumab) can offer patients, caregivers, health care systems and society are transformational and revolutionizing the treatment of cancer.
Ensuring these new life-saving medicines are affordable for patients requires collaboration between all stakeholders to implement sustainable solutions. This is why BMS is providing comments to the Institute for Clinical and Economic Review (ICER) on the scoping document for the upcoming “Treatment Options for Non-Small Cell Lung Cancer (NSCLC): Effectiveness, Value, and Value-Based Price Benchmarks” report, that the organization plans to share in draft form this summer.
Our feedback to ICER on the NSCLC scoping document is intended to contribute our company’s perspective on the value that Immuno-Oncology agents, such as Opdivo, provide to patients impacted by NSCLC. We encourage ICER to incorporate the points we outlined in our response, including:
  • Removing the evaluation of PD-1 inhibitors for the treatment of first-line NSCLC from scope due to lack of randomized clinical data in this population among all manufacturers included in the review
  • Accounting for patients with driver mutations in the analysis
  • Separating assessments by histology (squamous and non-squamous) to account for difference in responses to treatment
  • Reflecting consistent and relevant patient populations among product comparisons
  • Maintaining consistency regarding long-term treatment duration assumptions (despite the lack of clinical trial stopping rules)
  • Including indirect measures of value (like quality of life) in the modeled assessment
  • Fully and proactively disclosing ICER’s modeling approach
  • Excluding budget impact in the assessment as it is not a measure of patient value
Bristol-Myers Squibb is proud of our leadership role in Immuno-Oncology research ­— as we continually take a comprehensive scientific approach while maintaining a primary focus on people living with cancer who are in need of new treatment options. We look forward to working with ICER to help them understand the long-term benefits of Immuno-Oncology.
U.S. FDA APPROVED INDICATIONS FOR OPDIVO®
OPDIVO® (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 wild-type unresectable or metastatic melanoma.
OPDIVO® (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
OPDIVO® (nivolumab), in combination with YERVOY® (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
OPDIVO® (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.
OPDIVO® (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.
OPDIVO® (nivolumab) is indicated for the treatment of patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and post- transplantation brentuximab vedotin. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
Please refer to the end of the Important Safety Information for a brief description of the patient populations studied in the Checkmate trials.
IMPORTANT SAFETY INFORMATION
WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS
YERVOY can result in severe and fatal immune-mediated adverse reactions. These immune- mediated reactions may involve any organ system; however, the most common severe immune- mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.
Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy and evaluate clinical chemistries including liver function tests (LFTs), adrenocorticotropic hormone (ACTH) level, and thyroid function tests at baseline and before each dose.
Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions.
Immune-Mediated Pneumonitis
Immune-mediated pneumonitis, including fatal cases, occurred with OPDIVO treatment. Across the clinical trial experience with solid tumors, fatal immune-mediated pneumonitis occurred with OPDIVO. In addition, in Checkmate 069, there were six patients who died without resolution of abnormal respiratory findings. Monitor patients for signs with radiographic imaging and symptoms of pneumonitis. Administer corticosteroids for Grade 2 or greater pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In Checkmate 069 and 067, immune-mediated pneumonitis occurred in 6% (25/407) of patients receiving OPDIVO with YERVOY: Fatal (n=1), Grade 3 (n=6), Grade 2 (n=17), and Grade 1 (n=1). In Checkmate 037, 066, and 067, immune-mediated pneumonitis occurred in 1.8% (14/787) of patients receiving OPDIVO: Grade 3 (n=2) and Grade 2 (n=12). In Checkmate 057, immune- mediated pneumonitis, including interstitial lung disease, occurred in 3.4% (10/287) of patients: Grade 3 (n=5), Grade 2 (n=2), and Grade 1 (n=3). In Checkmate 025, pneumonitis, including interstitial lung disease, occurred in 5% (21/406) of patients receiving OPDIVO and 18% (73/397) of patients receiving everolimus. Immune-mediated pneumonitis occurred in 4.4% (18/406) of patients receiving OPDIVO: Grade 4 (n=1), Grade 3 (n=4), Grade 2 (n=12), and Grade 1 (n=1). In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 4.9% (13/263) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 3.4% (9/263) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=8).
Immune-Mediated Colitis
Immune-mediated colitis can occur with OPDIVO treatment. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. As a single agent, withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon restarting OPDIVO. When administered with YERVOY, withhold OPDIVO for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis upon restarting OPDIVO. In Checkmate 069 and 067, diarrhea or colitis occurred in 56% (228/407) of patients receiving OPDIVO with YERVOY. Immune-mediated colitis occurred in 26% (107/407) of patients: Grade 4 (n=2), Grade 3 (n=60), Grade 2 (n=32), and Grade 1 (n=13). In Checkmate 037, 066, and 067, diarrhea or colitis occurred in 31% (242/787) of patients receiving OPDIVO. Immune-mediated colitis occurred in 4.1% (32/787) of patients: Grade 3 (n=20), Grade 2 (n=10), and Grade 1 (n=2). In Checkmate 057, diarrhea or colitis occurred in 17% (50/287) of patients receiving OPDIVO. Immune-mediated colitis occurred in 2.4% (7/287) of patients: Grade 3 (n=3), Grade 2 (n=2), and Grade 1 (n=2). In Checkmate 025, diarrhea or colitis occurred in 25% (100/406) of patients receiving OPDIVO and 32% (126/397) of patients receiving everolimus. Immune-mediated diarrhea or colitis occurred in 3.2% (13/406) of patients receiving OPDIVO: Grade 3 (n=5), Grade 2 (n=7), and Grade 1 (n=1). In Checkmate 205 and 039, diarrhea or colitis occurred in 30% (80/263) of patients receiving OPDIVO. Immune-mediated diarrhea (Grade 3) occurred in 1.1% (3/263) of patients.
In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal (diarrhea of ≥7 stools above baseline, fever, ileus, peritoneal signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7%) patients. Across all YERVOY-treated patients in that study (n=511), 5 (1%) developed intestinal perforation, 4 (0.8%) died as a result of complications, and 26 (5%) were hospitalized for severe enterocolitis.
Immune-Mediated Hepatitis
Immune-mediated hepatitis can occur with OPDIVO treatment. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 immune- mediated hepatitis. In Checkmate 069 and 067, immune-mediated hepatitis occurred in 13% (51/407) of patients receiving OPDIVO with YERVOY: Grade 4 (n=8), Grade 3 (n=37), Grade 2 (n=5), and Grade 1 (n=1). In Checkmate 037, 066, and 067, immune-mediated hepatitis occurred in 2.3% (18/787) of patients receiving OPDIVO: Grade 4 (n=3), Grade 3 (n=11), and Grade 2 (n=4). In Checkmate 057, one patient (0.3%) developed immune-mediated hepatitis. In Checkmate 025, there was an increased incidence of liver test abnormalities compared to baseline in AST (33% vs 39%), alkaline phosphatase (32% vs 32%), ALT (22% vs 31%), and total bilirubin (9% vs 3.5%) in the OPDIVO and everolimus arms, respectively. Immune-mediated hepatitis requiring systemic immunosuppression occurred in 1.5% (6/406) of patients receiving OPDIVO: Grade 3 (n=5) and Grade 2 (n=1). In Checkmate 205 and 039, hepatitis occurred in 11% (30/263) of patients receiving OPDIVO. Immune-mediated hepatitis occurred in 3.4% (9/263): Grade 3 (n=7) and Grade 2 (n=2).
In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal hepatotoxicity (AST or ALT elevations >5x the ULN or total bilirubin elevations >3x the ULN; Grade 3-5) occurred in 8 (2%) patientswith fatal hepatic failure in 0.2% and hospitalization in 0.4%.
Immune-Mediated Dermatitis
In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal immune-mediated dermatitis (eg, Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3-5) occurred in 13 (2.5%) patients. 1 (0.2%) patient died as a result of toxic epidermal necrolysis. 1 additional patient required hospitalization for severe dermatitis.
Immune-Mediated Neuropathies
In a separate Phase 3 study of YERVOY 3 mg/kg, 1 case of fatal Guillain-Barré syndrome and 1 case of severe (Grade 3) peripheral motor neuropathy were reported.
Immune-Mediated Endocrinopathies
Hypophysitis, adrenal insufficiency, thyroid disorders, and type 1 diabetes mellitus can occur with OPDIVO treatment. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency during and after treatment, thyroid function prior to and periodically during treatment, and hyperglycemia. Administer corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Administer insulin for type 1 diabetes. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.
In Checkmate 069 and 067, hypophysitis occurred in 9% (36/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=8), Grade 2 (n=25), and Grade 1 (n=3). In Checkmate 037, 066, and 067, hypophysitis occurred in 0.9% (7/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=3), and Grade 1 (n=2). In Checkmate 025, hypophysitis occurred in 0.5% (2/406) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 1 (n=1). In Checkmate 069 and 067, adrenal insufficiency occurred in 5% (21/407) of patients receiving OPDIVO with YERVOY: Grade 4 (n=1), Grade 3 (n=7), Grade 2 (n=11), and Grade 1 (n=2). In Checkmate 037, 066, and 067, adrenal insufficiency occurred in 1% (8/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=5), and Grade 1 (n=1). In Checkmate 057, 0.3% (1/287) of OPDIVO-treated patients developed adrenal insufficiency. In Checkmate 025, adrenal insufficiency occurred in 2.0% (8/406) of patients receiving OPDIVO: Grade 3 (n=3), Grade 2 (n=4), and Grade 1 (n=1). In Checkmate 205 and 039, adrenal insufficiency (Grade 2) occurred in 0.4% (1/263) of patients receiving OPDIVO. In Checkmate 069 and 067, hypothyroidism or thyroiditis occurred in 22% (89/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=6), Grade 2 (n=47), and Grade 1 (n=36). Hyperthyroidism occurred in 8% (34/407) of patients: Grade 3 (n=4), Grade 2 (n=17), and Grade 1 (n=13). In Checkmate 037, 066, and 067, hypothyroidism or thyroiditis occurred in 9% (73/787) of patients receiving OPDIVO: Grade 3 (n=1), Grade 2 (n=37), Grade 1 (n=35). Hyperthyroidism occurred in 4.4% (35/787) of patients receiving OPDIVO: Grade 3 (n=1), Grade 2 (n=12), and Grade 1 (n=22). In Checkmate 057, Grade 1 or 2 hypothyroidism, including thyroiditis, occurred in 7% (20/287) and elevated thyroid stimulating hormone occurred in 17% of patients receiving OPDIVO. Grade 1 or 2 hyperthyroidism occurred in 1.4% (4/287) of patients. In Checkmate 025, thyroid disease occurred in 11% (43/406) of patients receiving OPDIVO, including one Grade 3 event, and in 3.0% (12/397) of patients receiving everolimus. Hypothyroidism/thyroiditis occurred in 8% (33/406) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=17), and Grade 1 (n=14). Hyperthyroidism occurred in 2.5% (10/406) of patients receiving OPDIVO: Grade 2 (n=5) and Grade 1 (n=5). In Checkmate 205 and 039, hypothyroidism/thyroiditis occurred in 12% (32/263) of patients receiving OPDIVO: Grade 2 (n=18) and Grade 1: (n=14). Hyperthyroidism occurred in 1.5% (4/263) of patients receiving OPDIVO: Grade 2: (n=3) and Grade 1 (n=1). In Checkmate 069 and 067, diabetes mellitus or diabetic ketoacidosis occurred in 1.5% (6/407) of patients: Grade 4 (n=3), Grade 3 (n=1), Grade 2 (n=1), and Grade 1 (n=1). In Checkmate 037, 066, and 067, diabetes mellitus or diabetic ketoacidosis occurred in 0.8% (6/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=3), and Grade 1 (n=1). In Checkmate 025, hyperglycemic adverse events occurred in 9% (37/406) patients.
Diabetes mellitus or diabetic ketoacidosis occurred in 1.5% (6/406) of patients receiving OPDIVO: Grade 3 (n=3), Grade 2 (n=2), and Grade 1 (n=1). In Checkmate 205 and 039, diabetes mellitus occurred in 0.8% (2/263) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 1 (n=1).
In a separate Phase 3 study of YERVOY 3 mg/kg, severe to life-threatening immune-mediated endocrinopathies (requiring hospitalization, urgent medical intervention, or interfering with activities of daily living; Grade 3-4) occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. 6 of the 9 patients were hospitalized for severe endocrinopathies.
Immune-Mediated Nephritis and Renal Dysfunction
Immune-mediated nephritis can occur with OPDIVO treatment. Monitor patients for elevated serum creatinine prior to and periodically during treatment. For Grade 2 or 3 increased serum creatinine, withhold and administer corticosteroids; if worsening or no improvement occurs, permanently discontinue. Administer corticosteroids for Grade 4 serum creatinine elevation and permanently discontinue. In Checkmate 069 and 067, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients: Grade 4 (n=4), Grade 3 (n=3), and Grade 2 (n=2). In Checkmate 037, 066, and 067, nephritis and renal dysfunction of any grade occurred in 5% (40/787) of patients receiving OPDIVO. Immune-mediated nephritis and renal dysfunction occurred in 0.8% (6/787) of patients: Grade 3 (n=4) and Grade 2 (n=2). In Checkmate 057, Grade 2 immune-mediated renal dysfunction occurred in 0.3% (1/287) of patients receiving OPDIVO. In Checkmate 025, renal injury occurred in 7% (27/406) of patients receiving OPDIVO and 3.0% (12/397) of patients receiving everolimus. Immune-mediated nephritis and renal dysfunction occurred in 3.2% (13/406) of patients receiving OPDIVO: Grade 5 (n=1), Grade 4 (n=1), Grade 3 (n=5), and Grade 2 (n=6). In Checkmate 205 and 039, nephritis and renal dysfunction occurred in 4.9% (13/263) of patients treated with OPDIVO. This included one reported case (0.3%) of Grade 3 autoimmune nephritis.
Immune-Mediated Rash
Immune-mediated rash can occur with OPDIVO treatment. Severe rash (including rare cases of fatal toxic epidermal necrolysis) occurred in the clinical program of OPDIVO. Monitor patients for rash. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4. In Checkmate 069 and 067, immune-mediated rash occurred in 22.6% (92/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=15), Grade 2 (n=31), and Grade 1 (n=46). In Checkmate 037, 066, and 067, immune-mediated rash occurred in 9% (72/787) of patients receiving OPDIVO: Grade 3 (n=7), Grade 2 (n=15), and Grade 1 (n=50). In Checkmate 057, immune-mediated rash occurred in 6% (17/287) of patients receiving OPDIVO including four Grade 3 cases. In Checkmate 025, rash occurred in 28% (112/406) of patients receiving OPDIVO and 36% (143/397) of patients receiving everolimus. Immune- mediated rash, defined as a rash treated with systemic or topical corticosteroids, occurred in 7% (30/406) of patients receiving OPDIVO: Grade 3 (n=4), Grade 2 (n=7), and Grade 1 (n=19). In Checkmate 205 and 039, rash occurred in 22% (58/263) of patients receiving OPDIVO. Immune-mediated rash occurred in 7% (18/263) of patients on OPDIVO: Grade 3 (n=4), Grade 2 (n=3), and Grade 1 (n=11).
Immune-Mediated Encephalitis
Immune-mediated encephalitis can occur with OPDIVO treatment. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In Checkmate 067, encephalitis was identified in one patient (0.2%) receiving OPDIVO with YERVOY. In Checkmate 057, fatal limbic encephalitis occurred in one patient (0.3%) receiving OPDIVO. In Checkmate 205 and 039, encephalitis occurred in 0.8% (2/263) of patients after allogeneic HSCT after OPDIVO.
Other Immune-Mediated Adverse Reactions
Based on the severity of adverse reaction, permanently discontinue or withhold treatment, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. In < 1.0% of patients receiving OPDIVO, the following clinically significant, immune-mediated adverse reactions occurred: uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, and sarcoidosis. Across clinical trials of OPDIVO as a single agent administered at doses of 3 mg/kg and 10 mg/kg, additional clinically significant, immune- mediated adverse reactions were identified: motor dysfunction, vasculitis, and myasthenic syndrome.
Infusion Reactions
Severe infusion reactions have been reported in <1.0% of patients in clinical trials of OPDIVO. Discontinue OPDIVO in patients with Grade 3 or 4 infusion reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. In Checkmate 069 and 067, infusion- related reactions occurred in 2.5% (10/407) of patients receiving OPDIVO with YERVOY: Grade 2 (n=6) and Grade 1 (n=4). In Checkmate 037, 066, and 067, Grade 2 infusion related reactions occurred in 2.7% (21/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=8), and Grade 1 (n=11). In Checkmate 057, Grade 2 infusion reactions requiring corticosteroids occurred in 1.0% (3/287) of patients receiving OPDIVO. In Checkmate 025, hypersensitivity/infusion-related reactions occurred in 6% (25/406) of patients receiving OPDIVO and 1.0% (4/397) of patients receiving everolimus. In Checkmate 205 and 039, hypersensitivity/infusion- related reactions occurred in 16% (42/263) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=24), and Grade 1 (n=16).
Complications of Allogeneic HSCT after OPDIVO
Complications, including fatal events, occurred in patients who received allogeneic HSCT after OPDIVO. Outcomes were evaluated in 17 patients from Checkmate 205 and 039, who underwent allogeneic HSCT after discontinuing OPDIVO (15 with reduced-intensity conditioning, 2 with myeloablative conditioning). Thirty-five percent (6/17) of patients died from complications of allogeneic HSCT after OPDIVO. Five deaths occurred in the setting of severe or refractory GVHD. Grade 3 or higher acute GVHD was reported in 29% (5/17) of patients. Hyperacute GVHD was reported in 20% (n=2) of patients. A steroid-requiring febrile syndrome, without an identified infectious cause, was reported in 35% (n=6) of patients. Two cases of encephalitis were reported: Grade 3 (n=1) lymphocytic encephalitis without an identified infectious cause, and Grade 3 (n=1) suspected viral encephalitis. Hepatic veno-occlusive disease (VOD) occurred in one patient, who received reduced-intensity conditioned allogeneic SCT and died of GVHD and multi-organ failure. Other cases of hepatic VOD after reduced-intensity conditioned allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor blocking antibody before transplantation. Cases of fatal hyperacute GVHD have also been reported. These complications may occur despite intervening therapy between PD-1 blockade and allogeneic HSCT.
Follow patients closely for early evidence of transplant-related complications such as hyperacute GVHD, severe (Grade 3 to 4) acute GVHD, steroid-requiring febrile syndrome, hepatic VOD, and other immune- mediated adverse reactions, and intervene promptly.
Embryo-fetal Toxicity
Based on their mechanisms of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with an OPDIVO- or YERVOY- containing regimen and for at least 5 months after the last dose of OPDIVO.
Lactation
It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from an OPDIVO-containing regimen, advise women to discontinue breastfeeding during treatment. Advise women to discontinue nursing during treatment with YERVOY and for 3 months following the final dose.
Serious Adverse Reactions
In Checkmate 067, serious adverse reactions (73% and 37%), adverse reactions leading to permanent discontinuation (43% and 14%) or to dosing delays (55% and 28%), and Grade 3 or 4 adverse reactions (72% and 44%) all occurred more frequently in the OPDIVO plus YERVOY arm relative to the OPDIVO arm. The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.6%), colitis (10% and 1.6%), and pyrexia (10% and 0.6%). In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO. Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO. Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 057, serious adverse reactions occurred in 47% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in ≥2% of patients were pneumonia, pulmonary embolism, dyspnea, pleural effusion, and respiratory failure. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, among all patients (safety population [n=263]), adverse reactions leading to discontinuation (4.2%) or to dosing delays (23%) occurred. The most frequent serious adverse reactions reported in 1% of patients were infusion-related reaction, pneumonia, pleural effusion, pyrexia, rash and pneumonitis. Ten patients died from causes other than disease progression, including 6 who died from complications of allogeneic HSCT. Serious adverse reactions occurred in 21% of patients in the safety population (n=263) and 27% of patients in the subset of patients evaluated for efficacy (efficacy population [n=95]).
Common Adverse Reactions
In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm were fatigue (59%), rash (53%), diarrhea (52%), nausea (40%), pyrexia (37%), vomiting (28%), and dyspnea (20%). The most common (≥20%) adverse reactions in the OPDIVO arm were fatigue (53%), rash (40%), diarrhea (31%), and nausea (28%). In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO vs dacarbazine were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 057, the most common adverse reactions (≥20%) reported with OPDIVO were fatigue (49%), musculoskeletal pain (36%), cough (30%), decreased appetite (29%), and constipation (23%). In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO vs everolimus were asthenic conditions (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, among all patients (safety population [n=263]) and the subset of patients in the efficacy population (n=95), respectively, the most common adverse reactions (reported in at least 20%) were fatigue (32% and 43%), upper respiratory tract infection (28% and 48%), pyrexia (24% and 35%), diarrhea (23% and 30%), and cough (22% and 35%). In the subset of patients in the efficacy population (n=95), the most common adverse reactions also included rash (31%), musculoskeletal pain (27%), pruritus (25%), nausea (23%), arthralgia (21%), and peripheral neuropathy (21%).
In a separate Phase 3 study of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).
CHECKMATE Trials and Patient Populations
Checkmate 069 and 067 - advanced melanoma alone or in combination with YERVOY; Checkmate 037 and 066 - advanced melanoma; Checkmate 057 – non-squamous non-small cell lung cancer (NSCLC); Checkmate 025 - renal cell carcinoma;Checkmate 205/039 - classical Hodgkin lymphoma
# # #

Alcoa Inc. Announces Filing of Initial Form 10 Registration Statement for Separation of Upstream Business, Alcoa Corporation

From #Alcoa:


June 29, 2016
Alcoa Inc. Announces Filing of Initial Form 10 Registration Statement for Separation of Upstream Business, Alcoa Corporation
Separation will create a globally cost-competitive Upstream company and an innovation and technology-driven Value-Add company

Separation on track to be completed in the second half of 2016

Alcoa to host conference call today at 8:30 AM Eastern Daylight Time to discuss Form 10

NEW YORK--(BUSINESS WIRE)--Lightweight metals leader Alcoa (NYSE:AA) today announced a major milestone in connection with its pending separation into two strong standalone, publicly-traded companies. Alcoa Upstream Corporation (to be renamed Alcoa Corporation prior to separation) has filed an initial Registration Statement on Form 10 with the Securities and Exchange Commission (SEC). Alcoa Corporation will hold the Upstream and North American packaging businesses. The Value-Add businesses will remain in the existing company, which will be named Arconic Inc. The separation is on track to be completed in the second half of 2016.

“The filing of the Form 10 is an important milestone as we prepare to launch two businesses that are well-positioned for success,” said Klaus Kleinfeld, Alcoa Chairman and Chief Executive Officer. “Alcoa Corporation has a low-cost base that will enable resilience and value-creation at all stages of the commodity cycle. Arconic is a technology-driven company producing performance materials and highly engineered products for growth markets, poised to deliver consistent profitable growth. Through our multi-year transformation, we have substantially re-positioned each business and laid the foundation for future long-term success. The separation will allow each new company to pursue its own distinct corporate strategy and unlock the full value of each business.”

Alcoa Corporation will be a globally competitive Upstream company. Its businesses will include Bauxite, Alumina, Aluminum, Cast Products and Energy and rolling mill operations that will serve the North American packaging market. Arconic will be a global leader in precision engineering and advanced manufacturing, providing a wide range of multi-material solutions to growth markets including aerospace structures, jet engines, automotive and commercial transportation. Its businesses will include the Engineered Products and Solutions, Global Rolled Products, and Transportation and Construction Solutions segments.

The initial Form 10 includes preliminary detailed information about Alcoa Corporation as a standalone company, such as historical financial information, as well as a description of Alcoa Corporation’s business and strategy and other legal and financial disclosures. The initial Form 10 is subject to change prior to completion of the separation.

The separation remains subject to the satisfaction of certain conditions, including obtaining final approval from the Alcoa Board of Directors, receipt of a favorable IRS ruling and opinions of Alcoa’s tax advisors regarding certain U.S. federal income tax matters and the effectiveness of the Form 10.

A copy of the initial Form 10 is available on the SEC website atwww.sec.gov and can also be viewed onwww.Alcoa.com/form_10_presentation. Supplemental information about Arconic can also be viewed on Alcoa’s website.

Conference Call

Alcoa will host a conference call at 8:30 AM Eastern Daylight Time to review the initial Form 10 and answer questions. The meeting will be webcast via alcoa.com. Call information and related details are available atwww.Alcoa.com/form_10_presentation .

Dissemination of Company Information

Alcoa intends to make future announcements regarding Company developments and financial performance through its website atwww.alcoa.com.

About Alcoa

A global leader in lightweight metals technology, engineering and manufacturing, Alcoa innovates multi-material solutions that advance our world. Our technologies enhance transportation, from automotive and commercial transport to air and space travel, and improve industrial and consumer electronics products. We enable smart buildings, sustainable food and beverage packaging, high performance defense vehicles across air, land and sea, deeper oil and gas drilling and more efficient power generation. We pioneered the aluminum industry over 125 years ago, and today, our approximately 58,000 people in 30 countries deliver value-add products made of titanium, nickel and aluminum, and produce best-in-class bauxite, alumina and primary aluminum products. For more information, visit www.alcoa.com, follow @Alcoa on Twitter atwww.twitter.com/Alcoa and follow us on Facebook atwww.facebook.com/Alcoa.

Forward-Looking Statements

This communication contains statements that relate to future events and expectations and as such constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements include those containing such words as “anticipates,” “believes,” “could,” “estimates,” “expects,” “forecasts,” “intends,” “may,” “outlook,” “plans,” “projects,” “seeks,” “sees,” “should,” “targets,” “will,” “would,” or other words of similar meaning. All statements that reflect the Company’s expectations, assumptions or projections about the future, other than statements of historical fact, are forward-looking statements, including, without limitation, statements regarding the separation transaction. Forward-looking statements are not guarantees of future performance and are subject to risks, uncertainties, and changes in circumstances that are difficult to predict. Although the Company believes that the expectations reflected in any forward-looking statements are based on reasonable assumptions, it can give no assurance that these expectations will be attained and it is possible that actual results may differ materially from those indicated by these forward-looking statements due to a variety of risks and uncertainties. Such risks and uncertainties include, but are not limited to: (a) uncertainties as to the timing of the separation and whether it will be completed; (b) the possibility that various closing conditions for the separation may not be satisfied; (c) the outcome of contingencies, including legal proceedings; (d) the impact of the separation on the businesses of Alcoa; (e) the risk that the businesses will not be separated successfully or such separation may be more difficult, time-consuming or costly than expected, which could result in additional demands on Alcoa’s resources, systems, procedures and controls, disruption of its ongoing business and diversion of management’s attention from other business concerns; and (f) the other risk factors discussed in the Company’s Form 10-K for the year ended December 31, 2015, and other reports filed with the SEC. The Company disclaims any obligation to update publicly any forward-looking statements, whether in response to new information, future events or otherwise, except as required by applicable law.

Merck and Moderna Announce Strategic Collaboration to Advance Novel mRNA-Based Personalized Cancer Vaccines with KEYTRUDA® (pembrolizumab) for the Treatment of Multiple Types of Cancer

From #Merck:


Merck and Moderna Announce Strategic Collaboration to Advance Novel mRNA-Based Personalized Cancer Vaccines with KEYTRUDA® (pembrolizumab) for the Treatment of Multiple Types of Cancer

Collaboration Combines Merck’s Leadership in Immuno-Oncology with Moderna’s Pioneering mRNA Vaccine Technology and Rapid Cycle Time, Small-Batch GMP Manufacturing Capabilities
Wednesday, June 29, 2016 7:00 am EDT
KENILWORTH, N.J. & CAMBRIDGE, Mass.--(BUSINESS WIRE)--Merck (NYSE:MRK), known as MSD outside the United States and Canada, and Moderna Therapeutics today announced a strategic collaboration and license agreement to develop and commercialize novel messenger RNA (mRNA)-based personalized cancer vaccines. The collaboration will combine Merck’s established leadership in immuno-oncology with Moderna’s pioneering mRNA vaccine technology and GMP manufacturing capabilities to advance individually tailored cancer vaccines for patients across a spectrum of cancers.
Moderna and Merck will develop personalized cancer vaccines that utilize Moderna’s mRNA vaccine technology to encode a patient’s specific neoantigens, unique mutations present in that specific patient’s tumor. When injected into a patient, the vaccine will be designed to elicit a specific immune response that will recognize and destroy cancer cells. The companies believe that the mRNA-based personalized cancer vaccines’ ability to specifically activate an individual patient’s immune system has the potential to be synergistic with checkpoint inhibitor therapies, including Merck’s anti-PD-1 therapy, KEYTRUDA® (pembrolizumab). In addition, Moderna has developed a rapid cycle time, small-batch manufacturing technique that will uniquely allow the company to supply vaccines tailored to individual patients within weeks.
Under the terms of the agreement, Merck will make an upfront cash payment to Moderna of $200 million, which Moderna will use to lead all research and development efforts through proof of concept. The development program will entail multiple studies in several types of cancer and include the evaluation of mRNA-based personalized cancer vaccines in combination with Merck’s KEYTRUDA® (pembrolizumab). Moderna will also utilize the upfront payment to fund a portion of the build-out of a GMP manufacturing facility in suburban Boston for the purpose of personalized cancer vaccine manufacturing.
Following human proof of concept studies, Merck has the right to elect to make an additional undisclosed payment to Moderna. If exercised, the two companies will then equally share cost and profits under a worldwide collaboration for the development of personalized cancer vaccines. Moderna will have the right to elect to co-promote the personalized cancer vaccines in the U.S. The agreement entails exclusivity around combinations with KEYTRUDA. Moderna and Merck will each have the ability to combine mRNA-based personalized cancer vaccines with other (non-PD-1) agents.
“Combining immunotherapy with vaccine technology may be a new path toward improving outcomes for patients,” said Dr. Roger Perlmutter, president, Merck Research Laboratories. “While the area of personalized cancer vaccine research has faced challenges in the past, there have been many recent advances, and we believe that working with Moderna to combine an immuno-oncology approach, using KEYTRUDA, with mRNA-based personalized cancer vaccines may have the potential to transform the treatment of cancer.”
“Our team has made significant progress since beginning our work in personalized cancer vaccines just last year. Through this collaboration with Merck, we are now well-positioned to accelerate research and development with a goal of entering the clinic in 2017, as well as to apply our unique GMP manufacturing capabilities to support the rapid production of these highly individualized vaccines,” said Stéphane Bancel, chief executive officer of Moderna. “We value our continued collaboration with Merck, and we look forward to working together to harness the potential of personalized cancer vaccines and immuno-oncology to bring a new treatment paradigm to patients.”
Merck and Moderna have an existing collaboration and license agreement focused on the discovery and development of mRNA-based infectious disease vaccines and passive immunity treatments. Moderna is also advancing its own pipeline of infectious disease vaccine candidates and currently has two phase 1 studies underway in Europe and the U.S.
About KEYTRUDA ® (pembrolizumab) Injection 100 mg
KEYTRUDA is a humanized monoclonal antibody that works by increasing the ability of the body’s immune system to help detect and fight tumor cells. KEYTRUDA blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is also indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 as determined by an FDA-approved test with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA. This indication is approved under accelerated approval based on tumor response rate and durability of response. An improvement in survival or disease-related symptoms has not yet been established. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
KEYTRUDA is administered at a dose of 2 mg/kg as an intravenous infusion over 30 minutes every three weeks for the approved indications.
Selected Important Safety Information for KEYTRUDA ®  (pembrolizumab)
Immune-mediated pneumonitis, including fatal cases, occurred in patients receiving KEYTRUDA® (pembrolizumab). Pneumonitis occurred in 32 (2.0%) of 1567 patients with melanoma, including Grade 1 (0.8%), 2 (0.8%), and 3 (0.4%) pneumonitis. Pneumonitis occurred in 19 (3.5%) of 550 patients with NSCLC, including Grade 2 (1.1%), 3 (1.3%), 4 (0.4%), or 5 (0.2%) pneumonitis and more frequently in patients with a history of asthma/chronic obstructive pulmonary disease (5.4%) or prior thoracic radiation (6.0%). Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.
Immune-mediated colitis occurred in 31 (2%) of 1567 patients with melanoma, including Grade 2 (0.5%), 3 (1.1%), and 4 (0.1%) colitis. Immune-mediated colitis occurred in 4 (0.7%) of 550 patients with NSCLC, including Grade 2 (0.2%) or 3 (0.4%) colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA (pembrolizumab) for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.
Immune-mediated hepatitis occurred in patients receiving KEYTRUDA. Hepatitis occurred in 16 (1%) of 1567 patients with melanoma, including Grade 2 (0.1%), 3 (0.7%), and 4 (0.1%) hepatitis. Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.
Hypophysitis occurred in 13 (0.8%) of 1567 patients with melanoma, including Grade 2 (0.3%), 3 (0.3%), and 4 (0.1%) hypophysitis. Hypophysitis occurred in 1 (0.2 %) of 550 patients with NSCLC, which was Grade 3 in severity. Monitor patients for signs and symptoms of hypophysitis (including hypopituitarism and adrenal insufficiency). Administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2; withhold or discontinue for Grade 3 or 4 hypophysitis.
Hyperthyroidism occurred in 51 (3.3%) of 1567 patients with melanoma, including Grade 2 (0.6%) and 3 (0.1%) hyperthyroidism. Hypothyroidism occurred in 127 (8.1%) of 1567 patients with melanoma, including Grade 3 (0.1%) hypothyroidism. Hyperthyroidism occurred in 10 (1.8%) of 550 patients with NSCLC, including Grade 2 (0.7%) or 3 (0.3%) hyperthyroidism. Hypothyroidism occurred in 38 (6.9%) of 550 patients with NSCLC, including Grade 2 (5.5%) or 3 (0.2%) hypothyroidism. Thyroid disorders can occur at any time during treatment. Monitor patients for changes in thyroid function (at the start of treatment, periodically during treatment, and as indicated based on clinical evaluation) and for clinical signs and symptoms of thyroid disorders. Administer replacement hormones for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism.
Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 3 (0.1%) of 2117 patients. Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer anti-hyperglycemics in patients with severe hyperglycemia.
Immune-mediated nephritis occurred in patients receiving KEYTRUDA. Nephritis occurred in 7 (0.4%) of 1567 patients with melanoma including, Grade 2 (0.2%), 3 (0.2%), and 4 (0.1%) nephritis. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA (pembrolizumab) for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 nephritis.
Other clinically important immune-mediated adverse reactions can occur. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA ® (pembrolizumab) and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.
The following clinically significant, immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 1567 patients with melanoma: arthritis (1.6%), exfoliative dermatitis, bullous pemphigoid, uveitis, myositis, Guillain-Barré syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, and partial seizures arising in a patient with inflammatory foci in brain parenchyma. The following clinically significant, immune-mediated adverse reactions occurred in less than 1% of 550 patients with NSCLC: rash, vasculitis, hemolytic anemia, serum sickness, and myasthenia gravis.
Severe and life-threatening infusion-related reactions have been reported in 3 (0.1%) of 2117 patients. Monitor patients for signs and symptoms of infusion related reactions including rigors, chills, wheezing, pruritus, flushing, rash, hypotension, hypoxemia, and fever. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.
Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. If used during pregnancy, or if the patient becomes pregnant during treatment, apprise the patient of the potential hazard to a fetus. Advise females of reproductive potential to use highly effective contraception during treatment and for 4 months after the last dose of KEYTRUDA.
In Trial 6, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). Adverse reactions leading to interruption of KEYTRUDA occurred in 21% of patients; the most common (≥1%) was diarrhea (2.5%). The most common adverse reactions with KEYTRUDA vs ipilimumab were fatigue (28% vs 28%), diarrhea (26% with KEYTRUDA), rash (24% vs 23%), and nausea (21% with KEYTRUDA). Corresponding incidence rates are listed for ipilimumab only for those adverse reactions that occurred at the same or lower rate than with KEYTRUDA (pembrolizumab).
In Trial 2, KEYTRUDA was discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (≥1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). Adverse reactions leading to interruption of KEYTRUDA occurred in 14% of patients; the most common (≥1%) were dyspnea (1%), diarrhea (1%), and maculo-papular rash (1%). The most common adverse reactions with KEYTRUDA vs chemotherapy were fatigue (43% with KEYTRUDA), pruritus (28% vs 8%), rash (24% vs 8%), constipation (22% vs 20%), nausea (22% with KEYTRUDA), diarrhea (20% vs 20%), and decreased appetite (20% with KEYTRUDA). Corresponding incidence rates are listed for chemotherapy only for those adverse reactions that occurred at the same or lower rate than with KEYTRUDA.
KEYTRUDA was discontinued due to adverse reactions in 14% of 550 patients with NSCLC. Serious adverse reactions occurred in 38% of patients. The most frequent serious adverse reactions reported at least 2% of patients were pleural effusion, pneumonia, dyspnea, pulmonary embolism, and pneumonitis. The most common adverse reactions (reported in at least 20% of patients) were fatigue (44%), cough (29%), decreased appetite (25%), and dyspnea (23%).
No formal pharmacokinetic drug interaction studies have been conducted with KEYTRUDA.
It is not known whether KEYTRUDA is excreted in human milk. Because many drugs are excreted in human milk, instruct women to discontinue nursing during treatment with KEYTRUDA and for 4 months after the final dose.
Safety and effectiveness of KEYTRUDA have not been established in pediatric patients.
Merck’s Focus on Cancer
Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck Oncology, helping people fight cancer is our passion and supporting accessibility to our cancer medicines is our commitment. Our focus is on pursuing research in immuno-oncology and we are accelerating every step in the journey – from lab to clinic – to potentially bring new hope to people with cancer.
As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the fastest-growing development programs in the industry. We are currently executing an expansive research program that includes more than 300 clinical trials evaluating our anti-PD-1 therapy across more than 30 tumor types. We also continue to strengthen our immuno-oncology portfolio through strategic acquisitions and are prioritizing the development of several promising immunotherapeutic candidates with the potential to improve the treatment of advanced cancers.
For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.
About Merck
For 125 years, Merck has been a global health care leader working to help the world be well. Merck is known as MSD outside the United States and Canada. Through our prescription medicines, vaccines, biologic therapies, and animal health products, we work with customers and operate in more than 140 countries to deliver innovative health solutions. We also demonstrate our commitment to increasing access to health care through far-reaching policies, programs and partnerships. For more information, visit www.merck.com and connect with us on TwitterFacebookYouTube and LinkedIn.
About Moderna Therapeutics
Moderna is a clinical stage pioneer of messenger RNA Therapeutics™, an entirely new in vivo drug technology that produces human proteins, antibodies and entirely novel protein constructs inside patient cells, which are in turn secreted or active intracellularly. This breakthrough platform addresses currently undruggable targets and offers a potentially superior alternative to existing drug modalities for a wide range of diseases and conditions. Moderna is developing and plans to commercialize its innovative mRNA drugs through its own ventures and its strategic relationships with established pharmaceutical and biotech companies. Its current ventures are: Onkaido, focused on oncology, Valera, focused on infectious diseases, Elpidera, focused on rare diseases, and Caperna, focused on personalized cancer vaccines. Cambridge-based Moderna is privately held and currently has strategic agreements withAstraZenecaAlexion Pharmaceuticals and Merck. To learn more, visit www.modernatx.com.
Forward-Looking Statement of Merck & Co., Inc., Kenilworth, N.J., USA
This news release of Merck & Co., Inc., Kenilworth, N.J., USA (the “company”) includes “forward-looking statements” within the meaning of the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995. These statements are based upon the current beliefs and expectations of the company’s management and are subject to significant risks and uncertainties. There can be no guarantees with respect to pipeline products that the products will receive the necessary regulatory approvals or that they will prove to be commercially successful. If underlying assumptions prove inaccurate or risks or uncertainties materialize, actual results may differ materially from those set forth in the forward-looking statements.
Risks and uncertainties include but are not limited to, general industry conditions and competition; general economic factors, including interest rate and currency exchange rate fluctuations; the impact of pharmaceutical industry regulation and health care legislation in the United States and internationally; global trends toward health care cost containment; technological advances, new products and patents attained by competitors; challenges inherent in new product development, including obtaining regulatory approval; the company’s ability to accurately predict future market conditions; manufacturing difficulties or delays; financial instability of international economies and sovereign risk; dependence on the effectiveness of the company’s patents and other protections for innovative products; and the exposure to litigation, including patent litigation, and/or regulatory actions.
The company undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise. Additional factors that could cause results to differ materially from those described in the forward-looking statements can be found in the company’s 2015 Annual Report on Form 10-K and the company’s other filings with the Securities and Exchange Commission (SEC) available at the SEC’s Internet site (www.sec.gov).
Please see Prescribing Information for KEYTRUDA (pembrolizumab) at  http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf  and Patient Information/Medication Guide for KEYTRUDA at  http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_mg.pdf .